Processing math: 100%
Subalgebra A101+A21D14
12 out of 23
Computations done by the calculator project.

Subalgebra type: A101+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A101 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: D14

Elements Cartan subalgebra scaled to act by two by components: A101: (3, 6, 3, 4): 20, A21: (1, 0, 1, 0): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g4+g5+g6, g1+g3
Positive simple generators: 3g6+3g5+4g4, g3+g1
Cartan symmetric matrix: (1/5001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (20004)
Decomposition of ambient Lie algebra: V4ω1+2ω2V6ω1V2ω2V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra.g6+g5+4/3g4g3+g1g12g11
weight2ω12ω26ω14ω1+2ω2
Isotypic module decomposition over primal subalgebra (total 4 isotypic components).
Isotypical components + highest weightV2ω1 → (2, 0)V2ω2 → (0, 2)V6ω1 → (6, 0)V4ω1+2ω2 → (4, 2)
Module label W1W2W3W4
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
3/4g63/4g5g4
h4+3/4h3+3/2h2+3/4h1
1/2g4+1/2g5+1/2g6
Semisimple subalgebra component.
g3g1
h3+h1
2g1+2g3
g12
g10+g9
g6g5+2g4
2h4+h3+2h2+h1
6g4+4g5+4g6
10g910g10
20g12
g11
g8
g10+g9
g3g1
g6g5
2g7
2g2
h3+h1
2g2
2g7
2g52g6
2g12g3
2g9+2g10
4g8
4g11
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
2ω2
0
2ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
4ω1+2ω2
2ω1+2ω2
4ω1
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
4ω1
2ω12ω2
4ω12ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
2ω2
0
2ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
4ω1+2ω2
2ω1+2ω2
4ω1
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
4ω1
2ω12ω2
4ω12ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1M2ω2M0M2ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M4ω1+2ω2M2ω1+2ω2M4ω1M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M4ω1M2ω12ω2M4ω12ω2
Isotypic characterM2ω1M0M2ω1M2ω2M0M2ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M4ω1+2ω2M2ω1+2ω2M4ω1M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M4ω1M2ω12ω2M4ω12ω2

Semisimple subalgebra: W_{1}+W_{2}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (700.00, 300.00)
1: (0.00, 1.00): (200.00, 400.00)




Made total 683185 arithmetic operations while solving the Serre relations polynomial system.